Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(40): 18552-18561, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136764

RESUMO

We demonstrate the use of functional-unit-based material design for thermoelectrics. This is an efficient approach for identifying high-performance thermoelectric materials, based on the use of combinations of functional fragments relevant to desired properties. Here, we reveal that linear triatomic resonant bonds (LTRBs) found in some Zintl compounds provide strong anisotropy both structurally and electronically, along with strong anharmonic phonon scattering. An LTRB is thus introduced as a functional unit, and compounds are then screened as potential thermoelectric materials. We identify 17 semiconducting candidates from the MatHub-3d database that contain LTRBs. Detailed transport calculations demonstrate that the LTRB-containing compounds not only have considerably lower lattice thermal conductivities than other compounds with similar average atomic masses, but also exhibit remarkable band anisotropy near the valence band maximums due to the LTRB. K5CuSb2 is adopted as an example to elucidate the fundamental correlation between the LTRB and thermoelectric properties. The [Sb-Cu-Sb]5- resonant structures demonstrate the delocalized Sb-Sb interaction within each LTRB, resulting in the softening of TA phonons and leading to large anharmonicity. The low lattice thermal conductivity (0.39 W/m·K at 300 K) combined with the band anisotropy results in a high thermoelectric figure of merit (ZT) for K5CuSb2 of 1.3 at 800 K. This work is a case study of the functional-unit-based material design for the development of novel thermoelectric materials.

2.
J Am Chem Soc ; 144(18): 8030-8037, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35446042

RESUMO

The conduction type of semiconductors is vitally important in many fields (e.g., photovoltaics, transistors, and thermoelectrics), but so far, there is no effective and simple indicator to quickly judge or predict the conduction type of various semiconductors. In this work, based on the relationship between the formation energy of charged defect and the Fermi level, we propose a simple and low-cost strategy for high-throughput screening the potential n-type or p-type semiconductors from the material database by using energy positions of band edges as indicators. As a case study, we validate this strategy in searching potential n-type thermoelectric materials from copper (Cu)-containing metal chalcogenides. A new promising thermoelectric material, CuIn5Se8, with potential intrinsic n-type conduction, is successfully screened from 407 Cu-containing metal chalcogenides and validated in the subsequent experiments. Upon doping iodine in CuIn5Se8, a peak thermoelectric figure of merit zT of 0.84 is obtained at 850 K. Beyond thermoelectrics, the strategy proposed in this study also sheds light on the new material development with desired conduction types in photovoltaics, transistors, and other fields.

3.
J Environ Sci (China) ; 115: 240-252, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969451

RESUMO

Rhizospheres can promote self-transmissible plasmid transfer, however, the corresponding mechanism has not received much attention. Plant-microbe remediation is an effective way to promote pollutant biodegradation; however, some pollutants, such as naphthalene, are harmful to plants and result in inefficient plant-microbe remediation. In this study, transfer of a TOL-like plasmid, a self-transmissible plasmid loaded with genetic determinants for pollutant degradation, among different bacteria was examined in bulk and rhizosphere soils as well as addition of maize root exudate and its artificial root exudate (ARE). The results showed that the numbers of transconjugants and recipients as well as bacterial metabolic activities, such as xylE mRNA expression levels and catechol 2,3-dioxygenase (C23O) activities of bacteria, remained high in rhizosphere soils, when compared with bulk soils. The number of transconjugants and bacterial metabolic activities increased with the increasing exudate and ARE concentrations, whereas the populations of donor and recipient bacteria were substantially unaltered at all concentrations. All the experiments consistently showed that a certain number of bacteria is required for self-transmissible plasmid transfer, and that the increased plasmid transfer might predominantly be owing to bacterial metabolic activity stimulated by root exudates and ARE. Furthermore, ARE addition increased naphthalene degradation by transconjugants in both culture medium and soil. Thus, the combined action of a wide variety of components in ARE might contribute to the increased plasmid transfer and naphthalene degradation. These findings suggest that ARE could be an effectively alternative for plant-microbe remediation of pollutants in environments where plants cannot survive.


Assuntos
Rizosfera , Poluentes do Solo , Biodegradação Ambiental , Naftalenos , Raízes de Plantas , Plasmídeos/genética , Solo , Microbiologia do Solo , Zea mays
4.
Curr Microbiol ; 76(7): 855-862, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073734

RESUMO

Bacillus velezensis strain S3-1 has a broad range of hosts and is used as a biocontrol agent and biofertilizer. However, the interaction of maize root exudates and colonization of the strain S3-1 has not yet been investigated. In our study, strain S3-1 effectively colonized both rhizosphere soil and root tissue. Collected maize root exudates significantly induced the chemotaxis, cluster movement, and biofilm formation of strain S3-1, showing increases of 1.43, 1.6, and 2.08 times, respectively, compared with the control. In addition, the components of root exudates (organic acids: citric acid, malic acid, and oxalic acid; amino acids: glycine, proline and phenylalanine; sugars: glucose, fructose, and sucrose) were tested. Each of these compounds could induce chemotactic response, swarming motility, and biofilm formation significantly. The strongest chemotactic response and swarming motility were found when malic acid was applied, but maximal ability of biofilm formation was stimulated by proline. Furthermore, we found that these compounds of root exudates stimulated the population of S3-1 adhering to the maize root surface, especially in the presence of malic acid. These results indicate that maize root exudates play an important role in the colonization of S3-1, and provide a deeper understanding of the interaction between plants and microorganisms.


Assuntos
Bacillus/crescimento & desenvolvimento , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Zea mays , Bacillus/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Quimiotaxia/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos , Locomoção/efeitos dos fármacos , Compostos Orgânicos/análise , Compostos Orgânicos/farmacologia , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia , Raízes de Plantas/química , Zea mays/metabolismo , Zea mays/microbiologia
5.
Environ Int ; 127: 114-124, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30913456

RESUMO

We investigated remediation of phenol from water using microbe-plant partnerships. Co-introduction of maize seedlings, Pseudomonas fluorescens rifampicin-resistant P13 and P. stutzeri P7 carrying self-transmissible TOL-like plasmids reduced phenol content in water at lower phenol concentrations (25, 50, and 75 mg/L), similar to individual introduction of the bacteria. Co-introduction of plants and bacteria significantly reduced phenol content in water at higher phenol concentrations (100, 125, and 150 mg/L) compared to using individual introduction of the bacteria. Moreover, TOL-like plasmids were transferred from P7 to P13. Addition of plants promoted the growth of both strains, leading to increased plasmid transfer. At higher phenol concentrations, addition of plants resulted in increases of catechol 2, 3-dioxygenase (C23O) activity and reduction in level of reactive oxygen species (ROS) of bacteria in the degradation experiments. Increased plasmid transfer and C23O activity and reduction in ROS level might be the major reasons why plants promote bacterial degradation of phenol at higher phenol concentrations. Furthermore, root exudate of maize seedlings and artificial root exudate (ARE) constructed using major components of the root exudate had the same effects on bacterial activities. Unlike the ARE, deletion of glucose, arabinose, or fructose or all the monosaccharides from ARE resulted in no increase in numbers of both strains and in plasmid transfer. At the higher phenol concentrations, deletion of glutamic acid, aspartic acid, alanine, or glycine or all the amino acids did not stimulate bacterial C23O activity. Deletion of fumaric, oxaloacetic or citric acids still reduced bacterial ROS level as ARE did, but, deletion of all the organic acids or DIMBOA, a hydroxamic acid, did not reduce bacterial ROS level as ARE did. The data showed that each monosaccharide might be important for sufficient numbers of plant-associated bacteria and increased plasmid transfer while each amino acid might be important for maintaining bacterial C23O activity and that DIMBOA might be responsible for the decrease in ROS levels. These results are the basis for efficient remediation of phenol from water by microbe-plant partnerships and further studies on the mechanism of rhizobacterium-plant interaction.


Assuntos
Fenóis/metabolismo , Água/química , Zea mays/metabolismo , Raízes de Plantas/metabolismo , Plasmídeos , Pseudomonas/metabolismo , Plântula/metabolismo
6.
J Colloid Interface Sci ; 488: 317-321, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27838556

RESUMO

Nitrogen-doped graphene aerogels with hierarchically porous architectures (N-Gs) are fabricated through the co-assembly of graphene oxide and o-phthalonitrile in a solvothermal process and the thermal treatment of the obtained composites at different temperatures. The structural characterizations indicate that both mesopores and macropores exist in the monolithic N-Gs. More importantly, the architectures, porosities and compositions show obvious dependence on the thermal treatment temperature. As the metal-free catalyst for oxygen reduction reaction in basic media, the sample thermally treated at 750°C shows the best catalytic performances among the three N-Gs, which is owing to its advantages in the surface areas and content of active N species.

7.
J Colloid Interface Sci ; 464: 83-8, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26609926

RESUMO

As a novel electrocatalyst for oxygen reduction reaction (ORR), nitrogen-doped graphene aerogel supported cobalt nanoparticles (Co-NGA) is archived by a hybrid-assembly of graphene oxide (GO), o-phthalonitrile and cobalt acetate and the following thermal treatment. The hybrid-assembly process successfully combines the ionic assembly of GO sheets and Co ions with the coordination between o-phthalonitrile and Co ions, which can be converted to nitrogen doped carbon and Co nanoparticles in the pyrolysis process under nitrogen flow. Remarkable features of Co-NGA including the macroporous graphene scaffolds, high surface area, and N/Co-doping effect can lead to a high catalytic efficiency for ORR. As the results, the composites pyrolyzed at 600°C (Co-NGA600) shows excellent electrocatalytic activities and kinetics for ORR in basic media, which are comparable with those of Pt/C catalyst, together with superior durability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...